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Abstract. Starting from a quite universal formula, which is obtained by variable separation approach and
valid for many (2+1)-dimensional nonlinear physical models, a new general type of solitary wave, i.e.,
semifolded solitary waves (SFSWs) and semifoldons, is defined and studied. We investigate the behaviors
of the interactions for the new semifolded localized structures both analytically and graphically. Some
novel features or interesting behaviors are revealed.

PACS. 05.45.Yv Solitons – 02.30.Jr Partial differential equations – 02.30.Ik Integrable systems

1 Introduction

In nonlinear science, soliton theory plays an essential role
and has been applied in almost all natural sciences es-
pecially in all physics branches such as condensed mat-
ter physics, field theory, fluid dynamics, plasma physics,
optics, etc. [1]. Most of the previous studies on soliton
theory especially in higher dimensions are restricted to
the single valued situations, such as dromion, compacton,
peakon and their interactions, although there are some
reports on multiple valued solitary waves (folded in all di-
rections) [2–5]. However, our nature is colorful and may
exhibit quite complicated multiple valued structures such
as semifolded ones. For example, some localized structures
such as ocean waves may fold in one direction, say x,
and localize in a usual single valued way in another di-
rection, say y. For convenience later, we define above lo-
calized excitations as semifolded solitary waves (SFSWs).
Furthermore, if the interactions among the semifolded
solitary waves are completely elastic, we call them semi-
foldons. In our knowledge, the interactions among single
valued and multivalued (semifolded) localized excitations
for (2+1)-dimensional integrable system were not reported
in the previous literature. To study the interaction be-
haviors among them more direct and visually, we take a
new (2+1)-dimensional nonlinear evolution equation, dis-
cussed by Maccari [6] by suitably utilizing the arbitrary
functions presented in the system, as a concrete example.
The system is of the form

iφt + φxx + χφ = 0, (1a)
iθt + θxx + χθ = 0, (1b)

χy =
(
|φ|2 + |θ|2

)
x

, (1c)
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where φ(x, y, t), θ(x, y, t) are complex and χ(x, y, t) is real.
equations (1) are derived from Nizhnik equations through
the reduction method. Uthayakunar et al. [7] have estab-
lished the integrability property of equations (1) by using
singularity structure analysis. Lai and Chow [8] obtained
the generalized dromion solution and two-dromion solu-
tion of equations (1). Starting from a special Bäcklund
transformation, we convert the equations (1) into sim-
ple variable separation equation, then obtain a quite gen-
eral variable separation solution. Some types of the usual
localized excitations of equations (1), such as dromions,
lumps, ring soliton and oscillated dromion, breathers so-
lution, etc, can be easily constructed by selecting appro-
priate arbitrary functions. Here, we only list some new
and interesting localized excitations for equations (1). In
particular, we are interested in the possible interaction
behavior among localized excitations.

2 Variable separation solutions for the new
(2+1)-dimensional nonlinear equation

To find out the interesting localized structures of the new
equation system (1), first, we take the following Bäcklund
transformation

φ =
g

f
+ φ0, θ =

h

f
+ θ0, χ = 2(ln f)xx + χ0x, (2)

where f is a real, g and h are complex, and (φ0, θ0, χ0) is
an arbitrary seed solution. Under the transformation (2),
equations (1) are transformed to their bilinear form,

(D2
x + iDt)f · g + φ0D

2
xf · f + fgχ0x + f2φ0χ0x = 0, (3)

(D2
x + iDt)f · h + θ0D

2
xf · f + fhχ0x + f2θ0χ0x = 0, (4)
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DxDyf · f − gg∗ − hh∗ + f2χ0y − fgφ∗
0 − fg∗φ∗

0 − fhθ∗0
− fh∗θ∗0 − f2(φ0φ

∗
0 + θ0θ

∗
0) = 0, (5)

where D is the usual bilinear operator.
To discuss further, we fix the seed solution

(φ0, θ0, χ0) as

φ0 = 0, θ0 = 0, χ0 = χ0(x, t), (6)

then equations (3), (4) and (5) can be simplified to

(D2
x + iDt)f · g + fgχ0x = 0, (7)

(D2
x + iDt)f · h + fhχ0x = 0, (8)

DxDyf · f = gg∗ + hh∗. (9)

To solve the bilinear equations (7) and (8) with equa-
tion (9), we make the ansatz

f = a1p(x, t) − a2q(y, t) + a3p(x, t)q(y, t), (10)

g = p1(x, t)q1(y, t)exp
(
ir1(x, t) + is1(y, t)

)
, (11)

h = p2(x, t)q2(y, t)exp
(
ir2(x, t) + is2(y, t)

)
, (12)

where a1, a2, and a3 are arbitrary constants and
p, q, p1, q1, p2, q2, r1, s1, r2, s2 are all real functions of the
indicated variables. For simplicity, we choose r1 = r2 = r
in equations (11) and (12). Similar to the solving process
of reference [9], we finally obtain

φ =
ε1ε2

√
λa1a2pxqy exp(ir + is1)
a1p − a2q + a3pq

, (13)

θ =
ε3ε4

√
(2 − λ)a1a2pxqy exp(ir + is2)

a1p − a2q + a3pq
, (14)

χ = 2

(
a1pxx + a3pxxq

a1p − a2q + a3pq
− (a1px + a3pxq)2

(a1p − a2q + a3pq)2

)
+ χ0x,

(15)
where p = p(x, t) is an arbitrary function of (x, t)
thanks to the arbitrariness of the introduced seed func-
tion χ0 = χ0(x, t),

χ0x = (4p2
x)−1

(
4rtp

2
x + 4p2

xr2
x + p2

xx − 2pxpxxx

)
, (16)

where q = q(y, t) is an arbitrary function of (y, t) satisfying
the following Riccati equation,

qt = −c3(a1 + a3q)2 − c2(a1 + a3q) + a1a2c1, (17)

and r = r(x, t) is related to p with

pt+2pxrx = c1(−a2+a3p)2+c2(−a2+a3p)−a1a2c3, (18)

si = si(y)(i = 1, 2) are arbitrary functions of y satisfying
sit = 0 with λ, a1, a2, and a3 being arbitrary constants,
ci = ci(t)(i = 1, 2, 3) and ε2

1 = ε2
2 = ε2

3 = ε2
4 = 1. Espe-

cially, the module square of the field φ and θ read

Φ = |φ|2 =
λa1a2pxqy

(a1p − a2q + a3pq)2
, (19)

Θ = |θ|2 =
(2 − λ) a1a2pxqy

(a1p − a2q + a3pq)2
. (20)

Because of the arbitrariness of the functions p(x, t), s1(y),
s2(y), and ci(t)(i = 1, 2, 3), equations (19) and (20) reveal
quite abundant soliton structures. Actually, from equa-
tions (19) and (20), it is easy to know the arbitrary p and
q with the boundary conditions

p |x→−∞ → B1, p |x→+∞ → B2,

q |y→−∞ → B3, q |y→+∞ → B4, (21)

where B1, B2, B3, and B4 are arbitrary constants which
may be infinities, are coherent soliton solution localized in
all directions. In the next section, we take physical quan-
tity Φ as an example to discuss some interesting proper-
ties.

3 Some novel localized structures for the
(2+1)-dimensional system equations (1)

It is interesting that the expression (19) is valid for
many (2+1)-dimensional models like the DS equation,
NNV system, ANNV equation and the BK equation,
etc. [2–5,9,10]. Moreover, because of the arbitrariness
of the functions p and q, included in (19), the quan-
tity Φ possesses quite rich structures. For instance, if we
select the functions p and q appropriately, we can ob-
tain many kinds of localized solutions, like the dromions,
lumps, ring soliton and oscillated dromion, breathers
solution, fractal-dromion and fractal-lump soliton struc-
tures [2,10]. In addition to the usual localized struc-
tures, some new localized excitations like peakon, com-
pacton, folded solitary wave and foldon solutions of
equations (1) are found by selecting some types of
lower-dimensional appropriate functions [2–5]. The prop-
erties of peakon-peakon, dromion-dromion, compacton-
compacton, and foldon-foldon interactions were discussed
in references [2–5,10]. In reference [9], we investigate the
interactions among different types of solitary waves like
peakons, dromions, and compactons both analytically and
graphically. Now we pay our attention to the new semi-
folded localized structures and interactions of single val-
ued and multivalued (semifolded) localized excitations.

3.1 Asymptotic behaviors of the localized excitations
produced from (19)

In general, if the function p and q are selected as localized
solitonic excitations with

p

∣∣∣∣∣t→∓∞ =
M∑
i=1

p∓i , p∓i ≡ pi(x − cit + δ∓i ), (22)

q

∣∣∣∣∣∣t→∓∞ =
N∑

j=1

q∓j , q∓j ≡ qj(y − Cjt + ∆∓
j ), (23)
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Φ |t→∓∞ →
M∑

i=1

N∑
j=1




λa1a2p
∓
ixq∓jy(

a1

(
p∓

i + P∓
i

) − a2

(
q∓j + Q∓

j

)
+ a3

(
p∓

i + P∓
i

) (
q∓j + Q∓

j

))2




≡
M∑

i=1

N∑
j=1

Φ∓
ij

(
x − cit + δ∓i , y − Cjt + ∆∓

j

) ≡
M∑

i=1

N∑
j=1

Φ∓
ij , (24)

where {pi, qj} ∀i and j are localized functions, then the
physical quantity Φ expressed by equation (19) delivers
M × N (2+1)-dimensional localized excitations with the
asymptotic behaviour

See equation (24) above

where
P∓

i =
∑
j<i

pj (∓∞) +
∑
j>i

pj (±∞), (25)

Q∓
i =

∑
j<i

qj (∓∞) +
∑
j>i

qj (±∞), (26)

and we have assumed without loss of generality, Ci > Cj

and ci > cj if i > j.
It can be deduced from expression (24) that the ij th

localized excitation Φij preserves its shape during the in-
teraction iff

P+
i = P−

i , (27)

Q+
j = Q−

j . (28)

Meanwhile, the phase shift of the ij th localized excitation
Φij reads

δ+
i − δ−i (29)

in the x direction and

∆+
j − ∆−

j (30)

in the y direction.
The above discussions demonstrate that localized soli-

tonic excitations for the universal quantity Φ can be con-
structed without difficulties via the (1+1)-dimensional lo-
calized excitations with the properties (22), (23), (27), and
(28). As a matter of fact, any localized solutions (or their
derivatives) with completely elastic (or not completely
elastic or completely inelastic) interaction behaviors of
any known (1+1)-dimensional integrable models can be
utilized to construct (2+1)-dimensional localized solitonic
solutions with completely elastic (P+

i = P−
i , Q+

j = Q−
j for

all i, j) (or not completely elastic or completely inelastic
(P+

i �= P−
i , Q+

j �= Q−
j at least for one of i, j)) interaction

properties. However, to the best of our knowledge, the
interactions among semifoldons, peakon, dromions, and
compactons were not reported in the literature. In order
to see the interaction behaviors among them more direct
and visually, we investigate some special examples by fix-
ing the arbitrary functions p and q in equation (19). For
convenience, we set λ = a1 = a2 = 1, a3 = 0.2 in equa-
tion (19) in the following discussion.

3.2 Completely elastic interactions

Now we discuss some new coherent structures for the
physical quantity Φ, and focus our attention on some
(2+1)-dimensional semifolded localized structures, which
may exist in certain situations, when the function q is
t-independent and p is selected via the relations,

px =
M∑
i=1

Ui(ξ + wit),

x = ξ +
M∑
i=1

Xi(ξ + wit),

p =
∫ ξ

pxxξdξ, (31)

where Ui and Xi are localized excitations with the prop-
erties Ui(±∞) = 0, Xi(±∞) = const. From equation (31),
one can knows that ξ may be a multi-valued function in
some suitable regions of x by selecting the functions Xi

appropriately. Therefore, the function px, which is obvi-
ously an interaction solution of M localized excitations
because of the property ξ |x→∞ → ∞, may be a multi-
valued function of x in these areas, though it is a single-
valued functions of ξ. Actually, most of the known multi-
loop solutions are a special situation of equation (31). In
general terms, if the functions p or q are taken as mul-
tiple localized excitations that possess the phase shifts
of (1+1)-dimensional models then the (2+1)-dimensional
localized excitations involving representation (19) inherit
phase shifts structures. As simple choices for the functions
p and q one can take,

px =
M∑
i=1

Ui(ξ + wit),

x = ξ +
M∑
i=1

Xi(ξ + wit), (32)

q = 1 +
N∑

j=1

exp
[
kj (y + βjt) + y0j

]
, (33)

where kj , βj, wi, and y0j are arbitrary constants and M, N
are positive integers. If taking the concrete forms of p and
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q =

N∑
i=1




0, y + βit ≤ y0i − π
2ki

bi cosαi+1
(
ki(y + βit − y0i)

)
, y0i − π

2ki
< y + βit ≤ y0i + π

2ki

0, y + βit > y0i + π
2ki

, (37)

q as follows

px =
4
5
sech2(ξ) +

1
2
sech2(ξ − 0.3t), x = ξ − 1.5 tanh(ξ)

− 1.5 tanh(ξ − 0.3t), (34)
q = 1 + exp(y), (35)

then we successfully construct semifolded localized excita-
tions that possess phase shifts for the physical quantity Φ
depicted in Figure 1. From Figure 1, we can see that the
two semifolded localized excitations possess novel proper-
ties, which fold in the y direction, and localize in a usual
single valued way in the x direction. Moreover, one can
find the interaction between the two semifolded localized
excitations (semifoldons) is completely elastic, which is
very similar to the completely elastic collisions between
two classical particles, since the velocity of one of the lo-
calized structures has set to be zero and there are still
phase shifts for the two semifolded localized excitations.
To see more carefully, one can easily find that the posi-
tion located by the large static localized structure is al-
tered from about x = −1.5 to x = 1.5 and its shape is
completely preserved after interaction.

Along the same line of argument and performing a
similar analysis, when p and q are taken as the following
forms,

px =
M∑

j=1

Uj(ξ + wjt),

x = ξ +
M∑

j=1

Xj(ξ + wjt), (36)

See equation (37) above

where M and N are positive integers, then we may con-
struct another type semifolded localized structures for the
physical quantity Φ. For simplicity, we take

px =
4
5
sech2(ξ) +

1
2
sech2(ξ − 0.3t),

x = ξ − 1.5 tanh(ξ) − 1.5 tanh(ξ − 0.3t), (38)

q =





0, y ≤ −π
2

cos5(y), −π
2 ≤ y ≤ π

2 .
0 y > π

2

(39)

Then we derive a combined localized coherent structure
depicted in Figure 2.

Fig. 1. The evolution of the interactions of two semifolded
localized structures for the physical quantity Φ expressed by
equation (19) with the conditions (34) and (35) at times (a)
t = −15, (b) t = −5, (c) t = 15, respectively.
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q =




N∑
j=1

ej exp(njy + wjt + y0j), njy + wjt + y0j ≤ 0

N∑
j=1

(
−ej exp(−njy − wjt − y0j) + 2ej

)
, njy + wjt + y0j > 0

, (41)

Fig. 2. The evolution of the interactions of two semifolded
localized structures for the physical quantity Φ expressed by
equation (19) with the conditions (38) and (39) at times (a)
t = −20, (b) t = −5, (c) t = 20, respectively.

According to the above ideas, if we take p and q to
have the following forms,

px =
M∑
i=1

Ui(ξ + wit),

x =ξ +
M∑
i=1

Xi(ξ + wit), (40)

See equation (41) above

where M and N are positive integers, then we may con-
struct third type semifolded localized structures for the
physical quantity Φ. For convenience, we select

px =
4
5
sech2(ξ) +

1
2
sech2(ξ − 0.3t),

x = ξ − 1.5 tanh(ξ) − 1.5 tanh(ξ − 0.3t), (42)

q =
{

exp(y) y ≤ 0
− exp(−y) y > 0 , (43)

and find that their interaction is also completely elastic.
The corresponding plot is depicted in Figure 3.

3.3 Non-completely elastic interactions

It is interesting to mention that though the above
choices lead to completely elastic interaction behaviors
for the (2+1)-dimensional solutions, one can also derive
some combined localized coherent structures with non-
completely elastic interaction behaviors by selecting p and
q appropriately. One of simple choices of the combined
localized coherent structures with non-completely elastic
interaction behavior is

px =
M∑
i=1

Ui(ξ + wit),

x = ξ +
M∑
i=1

Xi(ξ + wit), (44)

q = a0 +
N∑

j=1

Bj tanh
[
Kj (y + βjt) + y0j

]
, (45)

where a0, Bj , Kj, βj , wi, and y0j are all arbitrary con-
stants, and M, N are positive integers. We can find that
the interaction between semifoldons and dromions may
exhibit a novel property, which is non-completely elastic
since their shapes are not completely preserved after inter-
action. In order to clarify this phenomenon more clearly
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q =




a0, y + βit ≤ y0i − π
2ki

a0 +
N∑

i=1

(
bi sin (ki(y + βit − y0i)) + bi

)
, y0i − π

2ki
< y + βit ≤ y0i + π

2ki

a0 +
M∑

i=1

2bi, y + βit > y0i + π
2ki

, (49)

q =




N∑
j=1

ej exp(njy + wjt + y0j), njy + wjt + y0j ≤ 0

N∑
j=1

(
−ej exp(−njy − wjt − y0j) + 2ej

)
, njy + wjt + y0j > 0

, (53)

Fig. 3. The evolution of the interactions of two semifolded
localized structures for the physical quantity Φ expressed by
equation (19) with the conditions (42) and (43) at times (a)
t = −20, (b) t = −5, (c) t = 20, respectively.

and visually, an example is depicted in Figure 4 when the
related functions are fixed as follows

px =
4
5
sech2(ξ) +

1
2
sech2(ξ − 0.3t),

x = ξ − 1.5 tanh(ξ − 0.3t), (46)
q = tanh(y). (47)

Another example is provided by a combined semifoldon
and compacton soliton solutions in the (2+1)-dimensional
system. The corresponding ansatz is

px =
M∑
i=1

Ui(ξ + wit), x = ξ +
M∑
i=1

Xi(ξ + wit), (48)

See equation (49) above

where M and N are positive integers, then we may con-
struct another non-completely elastic interaction example
for the physical quantity Φ. For simplicity, we choose

px =
4
5
sech2(ξ) +

1
2
sech2(ξ − 0.3t),

x = ξ − 1.5 tanh(ξ − 0.3t), (50)

q =





0, y ≤ −π
2

sin(y) + 1, −π
2 ≤ y ≤ π

2 ,
2 y > π

2

(51)

and can derive a combined semifoldon-compacton local-
ized coherent structure with non-completely elastic behav-
ior depicted in Figure 5.

In fact, we can also construct combined semifoldon-
peakon localized coherent structures with non-completely
elastic interaction behaviors by selecting p and q as

px =
M∑
i=1

Ui(ξ + wit),

x = ξ +
M∑
i=1

Xi(ξ + wit), (52)

See equation (53) above
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Fig. 4. The evolution of the interactions between semifoldon
and dromion for the physical quantity Φ expressed by equa-
tion (19) with the conditions (46) and (47) at times (a)
t = −15, (b) t = −5, (c) t = 15, respectively.

where M and N are positive integers. Because of the com-
plexity, here we just write down the simplest case

px =
4
5
sech2(ξ) +

1
2
sech2(ξ − 0.3t),

x = ξ − 1.5 tanh(ξ − 0.3t), (54)

q =
{

exp(y) y ≤ 0
− exp(−y) y > 0 , (55)

Fig. 5. The evolution of the interactions between semifoldon
and compacton for the physical quantity Φ expressed by equa-
tion (19) with the conditions (50) and (51) at times (a)
t = −20, (b) t = −5, (c) t = 20, respectively.

The corresponding evolution plot is displayed in Figure 6.

4 Summary

Starting from the obtained variable separated excitations,
which describe some quite universal (2+1)-dimensional
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Fig. 6. The evolution of the interactions between semifoldon
and peakon for the physical quantity Φ expressed by equa-
tion (19) with the conditions (54) and (55) at times (a)
t = −20, (b) t = −5, (c) t = 20, respectively.

physical model, of a (2+1)-dimensional system, we discuss
the interactions among semifoldons, peakons, dromions,
and compactons both analytically and graphically, and
reveal some novel properties and interesting behaviors: the
interactions among semifoldons are completely elastic that
possess phase shifts and the interactions of semifoldon-
dromion, semifoldon-compacton, and semifoldon-peakon
are non-completely elastic depending on the specific de-
tails of the solutions. Because of the complexity of folded
phenomena and the wide applications of the soliton the-
ory, to learn more about the new localized structures and
interactions between different types of solitary waves and
their applications in reality is worth further study.

This work is supported by the National Natural Science Foun-
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